Cantellated 7-simplex


7-simplex

Cantellated 7-simplex

Bicantellated 7-simplex

Tricantellated 7-simplex

Birectified 7-simplex

Cantitruncated 7-simplex

Bicantitruncated 7-simplex

Tricantitruncated 7-simplex
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.

There are unique 6 degrees of cantellation for the 7-simplex, including truncations.

Contents

Cantellated 7-simplex

Cantellated 7-simplex
Type uniform polyexon
Schläfli symbol t0,2{3,3,3,3,3,3}
Coxeter-Dynkin diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 1008
Vertices 168
Vertex figure 5-simplex prism
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Bicantellated 7-simplex

Bicantellated 7-simplex
Type uniform polyexon
Schläfli symbol t1,3{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 2520
Vertices 420
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Tricantellated 7-simplex

Tricantellated 7-simplex
Type uniform polyexon
Schläfli symbol t2,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 3360
Vertices 560
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Cantitruncated 7-simplex

Cantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 1176
Vertices 336
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Bicantitruncated 7-simplex

Bicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t1,2,3{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 2940
Vertices 840
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Tricantitruncated 7-simplex

Tricantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t2,3,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 3920
Vertices 1120
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

Coordinates

The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

Related polytopes

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.


t0

t1

t2

t3

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t2,4

t0,5

t1,5

t0,6

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t1,3,4

t2,3,4

t0,1,5

t0,2,5

t1,2,5

t0,3,5

t1,3,5

t0,4,5

t0,1,6

t0,2,6

t0,3,6

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t1,2,3,5

t0,1,4,5

t0,2,4,5

t1,2,4,5

t0,3,4,5

t0,1,2,6

t0,1,3,6

t0,2,3,6

t0,1,4,6

t0,2,4,6

t0,1,5,6

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,3,4,5

t0,2,3,4,5

t1,2,3,4,5

t0,1,2,3,6

t0,1,2,4,6

t0,1,3,4,6

t0,2,3,4,6

t0,1,2,5,6

t0,1,3,5,6

t0,1,2,3,4,5

t0,1,2,3,4,6

t0,1,2,3,5,6

t0,1,2,4,5,6

t0,1,2,3,4,5,6

See also

Notes

  1. ^ Klitizing, (x3o3x3o3o3o3o - saro)
  2. ^ Klitizing, (o3x3o3x3o3o3o - sabro)
  3. ^ Klitizing, (o3o3x3o3x3o3o - stiroh)
  4. ^ Klitizing, (x3x3x3o3o3o3o - garo)
  5. ^ Klitizing, (o3x3x3x3o3o3o - gabro)
  6. ^ Klitizing, (o3o3x3x3x3o3o - gatroh)

References

External links