7-simplex |
Cantellated 7-simplex |
Bicantellated 7-simplex |
Tricantellated 7-simplex |
Birectified 7-simplex |
Cantitruncated 7-simplex |
Bicantitruncated 7-simplex |
Tricantitruncated 7-simplex |
Orthogonal projections in A7 Coxeter plane |
---|
In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.
There are unique 6 degrees of cantellation for the 7-simplex, including truncations.
Contents |
Cantellated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t0,2{3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 1008 |
Vertices | 168 |
Vertex figure | 5-simplex prism |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Bicantellated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t1,3{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2520 |
Vertices | 420 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Tricantellated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t2,4{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 3360 |
Vertices | 560 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Cantitruncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t0,1,2{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 1176 |
Vertices | 336 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Bicantitruncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t1,2,3{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2940 |
Vertices | 840 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [5] | [4] | [3] |
Tricantitruncated 7-simplex | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t2,3,4{3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 3920 |
Vertices | 1120 |
Vertex figure | |
Coxeter groups | A7, [3,3,3,3,3,3] |
Properties | convex |
The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.
Ak Coxeter plane | A7 | A6 | A5 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [[7]] | [6] |
Ak Coxeter plane | A4 | A3 | A2 |
Graph | |||
Dihedral symmetry | [[5]] | [4] | [[3]] |
This polytope is one of 71 uniform 7-polytopes with A7 symmetry.